
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007 1103

Word-Level Parallel Architecture of JPEG 2000
Embedded Block Coding Decoder

Yu-Wei Chang, Hung-Chi Fang, Chun-Chia Chen, Chung-Jr Lian, and Liang-Gee Chen, Fellow, IEEE

Abstract—This paper presents a word-level decoding architec-
ture of embedded block coding in JPEG 2000. This architecture
decodes one coefficient per cycle based on the proposed word-level
decoding algorithm. This algorithm eliminates state variable mem-
ories by decoding all bit-planes in parallel. The proposed column-
switching scan order overcomes intra bit-plane dependency and
inter bit-plane dependency to enable parallel processing. Imple-
mentation results show that the proposed architecture is capable
of decoding 54 MSamples/s at 54 MHz, which can support HDTV
720p (1280 720, 4:2:2) decoding at 30 frames/s.

Index Terms—Embedded block coding with optimized trunca-
tion, image compression, JPEG 2000.

I. INTRODUCTION

JPEG 2000 [1]–[4] uses two key components, discrete
wavelet transform (DWT) and embedded block coding with

optimized truncation (EBCOT), to achieve excellent coding
efficiency and numerous features [5], such as region of interest
(ROI) and various scalabilities. The scalabilities come from the
multiple decomposition of the DWT and the embedded block
coding (EBC) of the EBCOT.

The complexity of JPEG 2000 coding system is much higher
than that of JPEG [6]. The EBC occupies 53% of total compu-
tation [7], which is the most critical part in JPEG 2000 coding
system. Therefore, hardware implementation of the EBC is
a must for real-time applications. Many EBC architectures
[7]–[13] were proposed. All of them are bit-plane sequential
architectures, which encode or decode a code-block from a
higher bit-plane to a lower bit-plane sequentially. Besides,
all of them require on-chip SRAM to store state variables,
which indicate the coding states during bit-plane coding. The
sequential processing makes high performance JPEG 2000
system for coding HD motion pictures impossible. To solve
this problem, a word-level EBC architecture [14], [15] was pro-
posed to encode one DWT coefficient per cycle. It increases the
throughput of JPEG 2000 encoder dramatically and eliminates
state variable memories by encoding all bit-planes in parallel.
The parallel processing is enabled by looking one column of

Manuscript received June 12, 2006; revised January 23, 2007. This work
was supported in part by the National Science Council, R.O.C., under Grant
95-2752-E-002-008-PAE and in part by the MediaTek Fellowship. The asso-
ciate editor coordinating the review of this manuscript and approving it for pub-
lication was Dr. Lap-Pui Chau.

The authors are with the DSP/IC Design Lab, Graduate Institute of Elec-
tronics Engineering and Department of Electrical Engineering, National Taiwan
University, Taipei 106, Taiwan, R.O.C. (e-mail: wayne@video.ee.ntu.edu.tw;
honchi@video.ee.ntu.edu.tw; chunchia@video.ee.ntu.edu.tw; cjlian@video.ee.
ntu.edu.tw; lgchen@video.ee.ntu.edu.tw).,

Digital Object Identifier 10.1109/TMM.2007.902822

coefficients ahead to generate required state variables. Based
on the word-level architecture, Lai [16] and Li [17] proposed
coefficient parallel architectures to further improve the en-
coding throughput. However, all of these architectures can not
be used to decode all bit-planes in parallel since the technique
of looking ahead can not be used due to the unavailable values
of the look-ahead coefficients. Therefore, the existing solution
for the EBC decoder is bit-plane sequential architectures. The
sequential architectures make high throughput JPEG 2000
decoder impossible.

The most critical problem to design a parallel decoding archi-
tecture is the data dependency in the EBC algorithm. The cur-
rent sample can not be decoded without finish of decoding the
previous sample. Neither looking ahead techniques [15]–[17]
nor pass-parallel technique [9] can be used to enable parallel
decoding. The most contribution of this paper [18] is that the
first word-level EBC architecture for JPEG 2000 decoder is re-
alized. This architecture can decode one coefficient per cycle
regardless of coding bit-rate. Therefore, it is possible to de-
code nearly-lossless moving pictures while maintaining high
throughput. The word-level architecture decodes all bit-planes
in parallel based on the proposed word-level decoding algo-
rithm. The proposed column-switching scan order, which is not
different from that in our previous work [15], overcomes data
dependency problems. Besides, the checking conditions for de-
coding algorithm and resulting parallel architectures are also
different.

This paper is organized as follows. Section II reviews the
EBC algorithm and the previous EBC architectures. Section III
describes the proposed word-level EBC algorithm. The parallel
EBC architecture based on the word-level algorithm is pre-
sented at Section IV. Implementation results and comparisons
are shown in Section V. Finally, Section VI concludes this
paper.

II. PRELIMINARY

A. Embedded Block Coding Algorithm in JPEG 2000 Decoder

Embedded Block Coding (EBC) in JPEG 2000 decoder is
composed of the Context Formation (CF) and the Arithmetic
Decoder (AD), as shown in Fig. 1. The AD decodes a binary-
valued decision to reconstruct a corresponding sample bit by
receiving a context (CX) and embedded bit streams.

1) Context Formation: The basic coding unit of the EBC is
a code-block with typical size of 64 64 or 32 32. As shown
in Fig. 2, the order of bit-plane decoding in a code-block is from
the Most Significant Bit (MSB) bit-plane to the least significant
bit (LSB) bit-plane. A bit-plane is further divided into
stripes and the size of each stripe is 4 . The scan order is

1520-9210/$25.00 © 2007 IEEE

1104 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

Fig. 1. Diagram of the EBCOT algorithm. It contains context formation (CF)
and the arithmetic decoder (AD). The AD decodes a binary-valued decision
D to reconstruct a corresponding sample bit by receiving a context (CX) and
embedded bit streams.

Fig. 2. Diagram of code-block and stripes. A 64� 64 code-block is divided
into sixteen 4� 64 stripes. The numbers in the stripes represent the scan order.

stripe by stripe and column by column in a stripe. Each bit-plane
is sequentially scanned by three coding passes: the significant
propagation pass (Pass 1), the magnitude refinement pass (Pass
2), and the cleanup pass (Pass 3). The MSB bit-plane, which is
an exception, requires only the Pass 3.

In each scan, a context window, as shown in Fig. 3, is in-
volved while modeling the CX of a sample bit in a bit-plane.
The sample bit to be decoded lies in the center of the context
window and is denoted as . The eight-connected neighbors of

are further divided into horizontal (H), vertical (V), and di-
agonal (D) groups according to their relative position to , i.e.,

, , and . For
the CF, a binary state variable called significant state is defined
for a coefficient to indicate whether or not a nonzero magnitude
bit has been decoded in previous bit-planes or passes. Then, the
coding pass of is determined by the significant states of it-
self and its neighbors. If has been significant, it belongs to the
Pass 2. If is not significant but at least one of its neighbors is
significant, i.e., the significant neighbors have significant con-
tributions to , it belongs to the Pass 1; otherwise, it belongs to
the Pass 3.

There are five state variables used for the CF algorithm, the
magnitude bit-plane, the sign bit-plane, the significant state, the
visited state, and the first refinement state, and each of them
costs 4 kilobits (kb) for the maximum 64 64 code-block size.
The magnitude bit-plane and sign bit-plane store the magnitude
and the sign of the decoded sample bits, respectively. The visited
state indicates whether this sample was decoded or not, and the
first refinement state indicates whether this sample, if it belongs
to the Pass 2, is decoded by Pass 2 at the first time or not. Total
memory requirement for state variables is 20 kb.

For each scanned sample bit, one or more contexts are gen-
erated to adapt the probability models of the AD. Total 19 CXs
used by the EBC are classified into five categories, magnitude

Fig. 3. Context window for context formation. The sample coefficient to be
coded is referred as C. The eight neighbors of C are grouped as H, V and D.

coding, sign coding, magnitude refinement coding, run-length
coding (RLC) and uniform coding. The CXs for magnitude
coding and sign coding are used for the first nonzero sample bit
of a coefficient. Two CXs are generated for this sample bit since
the magnitude and sign value should be decoded. The CXs for
magnitude refinement coding are used for the significant sample
bit, i.e., these CXs are used only for the Pass 2. To increase
coding efficiency, the RLC CX is used for a special case that
all surrounding sample bits of a column are insignificant, and
all sample bits in this column are not decoded. If at least one
sample bit in this column is nonzero, the decoded bit by use
of the RLC CX is also nonzero. Two more uniform CXs plus
one sign CX are used to decode the position of the first nonzero
sample bit in this column and the sign value of this sample. The
RLC CX and uniform CX are used for the Pass 3 only since
the condition for RLC are never satisfied during Pass 1 coding.
Detailed information for the context mapping is described in
[19].

2) Arithmetic Decoder: The AD is an adaptive, multipli-
cation-free, binary MQ coder. It is derived from the Q coder
[20] and enhanced by a conditional exchange procedure derived
from the MELCODE [21] and the state-transition table known
as JPEG-FA [22]. The probability tables are predetermined and
provided by the standard.

B. Causal Context and Coding Pass Termination

JPEG 2000 defines the causal context mode which is that the
samples in the next stripe are considered as insignificant sam-
ples. As shown in Fig. 3, the , , and are located in the
next stripe, and therefore, these samples are considered as in-
significant samples no matter what values they are. This mode
breaks the dependency from the next stripe.

There are two termination modes for the embedded
bit-streams and two reset modes for the arithmetic coder.
For the two termination modes, one is to terminate bit-streams
at the end of each coding pass, and the other is to terminate them
at the end of each code-block. For the two reset modes, one is
to initialize the adaptive probability of the arithmetic coder at
the start of each coding pass, and the other is to initialize it only
at the start of each code-block. By combining the termination
and initialization at each coding pass, the dependency between
embedded bit-streams are broken.

CHANG et al.: WORD-LEVEL PARALLEL ARCHITECTURE OF JPEG 2000 EBC DECODER 1105

For simplicity, when causal context mode, pass termination,
and pass initialization are enabled, it is called parallel coding
mode, otherwise, it is called sequential coding mode. The av-
eragepeaksignal-to-noiseratio(PSNR)lossoftheparallelcoding
mode compared to the sequential coding mode is about 0.25 dB
in medium to high bit-rate and 0.1 dB in low bit-rate [15]. In [19],
it shows that the loss is about 0.15 dB for 64 64 code-block and
0.35 dB for 32 32 code-block at medium bit-rate.

C. Previous EBC Architectures

In this section, we introduce some typical EBC architectures.
Lian et al. [7] proposed an EBC architecture, which realized
the sequential coding mode. Three scans are needed to encode
one bit-plane, except for the MSB bit-plane, which needs only
one scan. Three speed-up techniques were proposed to reduce
the processing time. With these techniques, the number of pro-
cessing cycles are reduced to 38% in average. Therefore, it re-
quires 1.3 clock cycles to encode a code-block with size
of and nonzero bit-planes. The three scans are re-
quired due to several reasons. First, the causal context mode
is not enabled in the sequential coding mode, and the sample
bits which belong to Pass 1 in the first row of the next stripe
would have significant contributions to the samples in the last
row of the current stripe. Therefore, Pass 1 should be scanned
first. Second, the adaptive probability of the arithmetic coder
is not initialized at the start of each coding pass. Three scans
should be operated sequentially since the initial probability of
the current coding pass should be the final probability of the
previous coding pass. The memory requirement for this archi-
tecture is 21 kb, in which 20 kb and 1 kb are for state variables
and the proposed techniques, respectively. This architecture can
realize decoding function if the AE is replaced with AD [23].

Hsiao et al. [8] reduces the memory requirement of the state
variables in the EBC by exploring the dependency among these
state variables. This technique reduces the memory requirement
by 20% at the cost of a few logic gates. An architecture for
the AE was also proposed in [8], using three pipeline stages
in normal operation and four pipeline stages when the byteout
is triggered. However, when the AE is in the byteout stage, it
cannot process the context decision (CXD) pair from the block
coder. At this cycle, the block coder must be stalled.

Chiang et al. [9] proposed a pass-parallel EBC architecture,
which realizes parallel coding mode. This architecture uses two
context windows concurrently, one for the Pass 1 and the Pass
2, and the other for the Pass 3, to process a bit-plane within
one scan. Therefore, the processing cycles for a code-block are

. The memory requirement of the state variables is reduced
by 4 kb due to two parallel context windows. To handle three
independent embedded bit-streams for three coding passes, the
pass-switching AE (PSAE), which is composed of one pro-
cessing element (PE) and three suits of coding status registers,
was proposed. The pass-parallel architecture is enabled due to
the parallel coding mode. Although this architecture is designed
for the encoder, it also can be used for the decoder if the AE is
replaced with AD.

All of the above architectures have limited performance since
all bit-planes are processed sequentially. To overcome this ob-
stacle, Fang et al. [14], [15] proposed a word-level EBC archi-

tecture, which encodes all bit-planes in parallel. The memory re-
quirement for the state variables is eliminated due to the parallel
algorithm. This EBC architectures contains parallel CF (PCF),
reconfigurable FIFO (first-in-first-out), and folded AE (FAE).
The PCF scans one DWT coefficient per cycle and generates
CX and decision (CXD) pairs. The FIFO receives the CXD pairs
and sends to the FAE. The FAE is an extended architecture of the
PSAE by folding two bit-planes into one AE module. When the
FIFO is full, the PCF must be stalled until the FIFO is available.
Because of the limited throughput of FAE and the limited length
of FIFO, the effective throughput of the EBC is 1.5 , which
is 33% degradation from the ideal value . The word-level
architecture is enabled by looking one column of coefficients
ahead from the current context window. Although this archi-
tecture is a parallel architecture, it can not be used to decode
all bit-planes in parallel due to two critical reasons. First, the
technique of looking one column of coefficients ahead can not
be used since these coefficients are unavailable during the de-
coding process. Second, unlike only forward path between CF
and AE in the encoder, there is a feedback path between CF and
AD in the decoder. The next CX would depend on the previous
D. Therefore, the FIFO architecture between CF and AD would
degrade performance dramatically since the CF must be stalled
frequently.

To further increase the performance for the EBC, the coeffi-
cients parallel architectures [16], [17] were proposed to encode
four coefficients in a column. However, these architectures can
not be used to decode multiple coefficients due to the same rea-
sons described in the previous paragraph.

As can be seen, there is a huge gap between the encoding
throughput and decoding throughput for the EBC. In this paper,
we propose a word-level EBC architecture to decode a DWT
coefficient per cycle.

III. PARALLEL EBC DECODING ALGORITHM

In this section, we propose a word-level EBC algorithm for
decoding. By use of this algorithm, the EBC decodes one coef-
ficient per cycle regardless of numbers of bit-planes. All state
variables are generated on-the-fly by using parallel algorithm.
Moreover, the throughput is significantly increased due to par-
allel processing. For the proposed algorithm, causal context and
pass termination, which are defined as parallel mode in the JPEG
20000 standard, are used.

A. Column-Switching Scan Order

There are two data dependency problems for the EBC de-
coding algorithm. One is intra bit-plane dependency and the
other is inter bit-plane dependency. As shown in Fig. 3, the
coding pass and the CX of depend on the decoded values of
the eight surrounding neighbors in the same bit-plane, which is
called intra bit-plane dependency, and depend on the decoded
values of eight surrounding neighbors in the upper bit-planes,
which is called inter bit-plane dependency.

We propose a column-switching scan order to solve above
two dependency problems. An example of the scan order in a
bit-plane, , is illustrated with Fig. 4. The numbers in the circle
present the decoding orders. There are two subscans, Pass 1 de-
coding scan in a column and non-Pass 1 (Pass 2 and Pass 3)

1106 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

Fig. 4. Proposed column-switch scan order in a bit-plane. The numbers is the
precessing cycle. There are two subscans, Pass 1 scan and non-Pass 1 scan. The
Pass 1 scan is one column ahead of the non-Pass 1 subscan.

decoding scan in a column. The sample bits are decoded one
column by one column in a column-switching manner. Note that
the Pass 1 decoding scan precedes the non-Pass 1 decoding scan
by one column to solve intra bit-plane dependency. The reason
of one column ahead for Pass 1 scan is that nonzero samples
which belong to Pass 1 have contributions to the samples which
belong to Pass 2 or Pass 3.

In each subscan, only the samples to be decoded are visited
and each visited sample requires one processing cycle. It is easy
to check which sample should be decoded in the respective sub-
scan. For the Pass 1 subscan, if none of the samples in a column
is decoded, the first step is to check whether all the surrounding
samples of this column are insignificant. If so, this column is
skipped and the non-Pass 1 subscan is started; otherwise, it is to
determine the location of the first Pass 1 sample and then to de-
code it. If at least one of sample is decoded at this column, it is to
determine whether there is any Pass 1 sample to be decoded. If
not, the non-Pass 1 subscan is started, otherwise, the Pass 1 sub-
scan is continued. For the non-Pass 1 subscan, if the first non-de-
coded sample is significant, it belongs to Pass 2, otherwise, it
belongs to Pass 3. All the conditional decisions for coding pass
are finished in one cycle. Therefore, exact one sample is decoded
in a cycle and no cycle is wasted for just making decisions but
not decoding sample. Since exact one cycle to decode a sample
is guaranteed, the numbers of processing cycles needed to de-
code a bit-plane are equal to the numbers of sample bits in this
bit-plane.

For the inter bit-plane dependency problem, it is solved by
four columns scan latency between two successive bit-planes,
i.e., the bit-plane () starts to scan when the bit-plane
starts to scan the 4th column. Fig. 5 illustrates a critical example
of the nearest distance of two context windows between two
successive bit-planes. The number in a circle indicates the order
of the decoding cycle except indicates the initial condition.
The bit-plane () starts to scan at the moment that the bit-
plane starts to scan the 4th column at the 14th decoding cycle.
The column in the bit-plane () is initialized with two
Pass 1 samples since there are two Pass 1 samples at the 3rd
column in the bit-plane . The nearest distance of two context
windows is happened at 36th and 37th decoding cycle. The 7th
column is overlapped by two context windows, and all sample
bits of this column in the bit-plane are available since they
have been visited by two subscans. Therefore, inter bit-plane
dependency problem is solved.

The moving speed of context window in the bit-plane
is slowed since there are four Pass 1 samples at the ninth

Fig. 5. Example of column-switch scan order between two successive
bit-planes. The numbers present the precessing cycle. The bit-plane (k � 1)
starts to scan at the moment that the bit-plane k starts to scan the 4th column
at the 14th decoding cycle. There are three columns spacing (four column
latency) between two successive bit-planes.

column while the moving speed of the context window in the
bit-plane () is accelerated since no Pass 1 sample at the
fifth column. After the finish of the scan of the 8th column and
the sixth column in the bit-plane and the bit-planes (),
respectively, the moving speed of the context window in the
bit-plane is accelerated while that in the bit-plane ()
is slowed. This phenomenon is called moving jitter. If there
is enough column spacing between two successive context
windows, the moving jitter does not cause data conflict. There-
fore, three columns spacing (four columns latency) between
two successive context windows is used to solve moving jitter
problem. In three columns latency, two are considered for that
the moving speed of context windows in bit-plane () is
one column faster and that in bit-plane is one column slower.
The remained one is to make sure that at most one column is
overlapped by two context windows. Therefore, three columns
are the minimum latency between two successive bit-planes.

To enable parallel decoding, all bit-planes in a code-block are
scanned with the column-switching manner described above.
Although all context windows in all bit-planes scan different
sample bit for different coefficients, the overall throughput is
one coefficient decoding per cycle since one sample bit is de-
coded per cycle in each bit-plane. Since there are three columns
latency between two successive two bit-planes, the latency to
decode a complete coefficient is 4 columns, where is the
number of bit-planes in a code-block.

B. Coding Pass Classification

In this section, the coding pass classification algorithm is pre-
sented. Let denote the binary value of the central sample bit
() in the bit-plane , and denote the binary value of de-
coded bit of either one of the eight surrounding samples in the
bit-plane . The is used to represent any neighbor of , i.e.,

as shown in Fig. 2. The
ranges of are from to 0, in which zero represents the
LSB bit-plane. In the following discussions, a superscript indi-
cates the bit-plane number, and a suffix indicates the location in
the context window.

CHANG et al.: WORD-LEVEL PARALLEL ARCHITECTURE OF JPEG 2000 EBC DECODER 1107

The coding pass of in the bit-plane , , is determined by
the significant contributions of its eight neighbors at bit-plane

. The contribution of to the -th bit-plane of is represented
by . Note that when is located on the last row in a column,

, , and are set to zero since the causal context mode
is used. For that is decoded before , its contribution is deter-
mined by

otherwise
(1)

where is

(2)

Note that is available since is decoded before . For that
is decoded after , its contribution is

otherwise.
(3)

According to the scan order described in Section III-A, whether
is decoded before or not is determined by its location. If
is located at the previous stripe, i.e, , and are in the

previous stripe when is in the first row of current-scanned
stripe, it is decoded before . For the case that is not in the
first row of current stripe, whether is decoded before or
not depends on whether is decoded or not during the column-
switching scan order.

The coding pass is determined by

otherwise

(4)

where the range of is from 0 to 8.

C. Context Formation

In this section, we propose a parallel CF algorithm, which
calculates state variables on-the-fly. Therefore, no state variable
memories are required. In the following sections, we elaborate
the algorithms to obtain the CXs for magnitude coding, sign
coding and magnitude refinement coding separately.

1) Magnitude Coding: The context mapping for the magni-
tude coding requires the group . Let , , and de-
notes the group , and , respectively, in the -th bit-plane
of relative to . The group contributions are determined by

(5)

(6)

and

(7)

TABLE I
TRUTH H (V) FOR SIGN CODING

For is decoded after , the is defined as

otherwise.
(8)

Otherwise, for is decoded before , the is defined as

otherwise.
(9)

The context mapping are according to the value of , , and
.

2) Sign Coding: The context mapping for the sign coding
requires the group data, , , and . Let denotes the
sign of , where “1” stands for a negative coefficient and truth
table for and is shown in Table I.

3) Magnitude Refinement Coding: The context for magni-
tude refinement coding are determined by group contributions,

, , and , and an indicator, to indicate whether first
refinement or not for . The is calculated by

otherwise.
(10)

D. Arithmetic Decoder

In the parallel mode, the probability tables are reset on each
coding pass, and the embedded bit stream of each pass is ter-
minated to separate it from other coding passes. Termination
on each pass prevents error from propagating across passes and
makes parallel EBC decoding possible.

IV. WORD-LEVEL EBC ARCHITECTURE

In this section, a word-level EBC architecture for decoder is
proposed based on the word-level algorithm. The proposed ar-
chitecture is shown in Fig. 6. It decodes ten magnitude bit-planes
as well as sign bit-plane in parallel. There are three major func-
tional blocks, parallel context formation (PCF), arithmetic de-
coder (AD), and magnitude register bank (MRB). The state reg-
ister bank (SRB) stores the coding states of the AD, and the
four-symbol arithmetic decoder (FAD) decodes four symbols,
which are the maximum numbers of contexts generated by a
CF, in a processing cycle. There is no pipeline stage between
FAD and PCF. Therefore, one coefficient decoding per cycle
is achieved. The dataflow in each CF is the column-switching
scan order, as described in Section III-A, and the dataflow of

1108 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

Fig. 6. Embedded block coding decoder architecture. four-symbol arithmetic
decoder (FAD) process all generated contexts from parallel context formation
(PCF) to guarantee 10-bit coefficient decoding per cycle. The state register bank
stores the coding states of FAD. The decoded sample bits from PCF are merged
into magnitude register bank (MRB). The line buffer memory stores the coeffi-
cients of the last row in the previous stripe.

two successive CFs are separated by four columns. Therefore,
the latency to decode a column is 40 columns (40 4 cycles).
The 12 64-bit line buffer is used to buffer the decoded coef-
ficients of the last row in the previous stripe. Each 12-bit word
in the line buffer contains 11 bits for a coefficient and 1 bit for
indicating whether the coding pass of the first significant bit of
this coefficient is Pass 1 or not. There are two conditions for that
the first significant bit of the last row of the previous stripe has
significant contribution to the samples in the first row of the cur-
rent stripe. One is that it has nonzero value and its coding pass is
Pass 1, and the other is that it has nonzero value and its coding
pass is Pass 3 as well as the coding pass of the sample in the first
row of the current stripe is also Pass 3. Therefore, one bit is suf-
ficient to indicate whether the coding pass of the first significant
bit in the previous stripe is Pass 1 or not. The partial decoded
coefficients from CF3 are feedbacked to CF9 to serve as the co-
efficients of the last row in the previous stripe for a code-block
size 32 32 since the latency to decode a complete column is
larger than 32 columns. The detailed architecture of each func-
tional block will be elaborated in the following sections.

A. Context Formation

The detailed CF architecture is shown in Fig. 7, and the ar-
chitecture of each PE is shown in Fig. 8. Each CF contains
five columns of PE (). The C0, C1, C2, and C3 can
be regarded as four columns latency between two successive
bit-planes. The C4 is used as a temporal buffer to buffer the
output of C3. The reason will be explained latter. Each PE gen-
erates the corresponding variables defined in Section III. The

in each PE indicates whether this sample is decoded. The
in PE2 is used to indicate whether

defined in (1) is satisfied or not since the condition,
, is happened only at the MSB bit-plane of

. A special code, (, is used to represent
to save one bit register since when and , is

Fig. 7. Context formation architecture. The architecture of each PE is shown in
Fig. 8. Each CF contains five columns of PE (C0 � C4). The C0, C1, C2 and
C3 can be regarded as four columns latency between two successive bit-planes.
The C4 is used as a temporal buffer to buffer the output of C3.

Fig. 8. Elementary processing element architecture in Fig. 7. Each PE gener-
ates the corresponding variables defined in Section III.

meaningless and it can be used to present the . The finite state
machine (FSM) controller receives all variables calculated from
each PE, and it generates corresponding coding pass and con-
texts for the sample bit to be decoded. The FSM controller also
receives the decoded magnitude bit and sign bit from AD then
writes into the corresponding PE that scans the current-decoded
sample. The and the output from C3 or C4 are merged into
the dataflow of the CF of the lower bit-plane while the is
written into the MRB as shown in Fig. 6.

The forward control signal is activated by the FSM controller
whenever four sample bits in a column are decoded. When the
forward signal is activated, all the data stored in the register of
each PE are shifted by one column left, and the CF in the lower

CHANG et al.: WORD-LEVEL PARALLEL ARCHITECTURE OF JPEG 2000 EBC DECODER 1109

Fig. 9. Finite state machine (FSM) transition diagram. The transition condi-
tions are described in Table II.

TABLE II
TRANSITION CONDITIONS OF FSM CONTROLLER IN FIG. 9

bit-plane fetches a column from either the C3 or the C4 of the
CF in the upper bit-plane. At the same time, the column PE,
C4, is used as temporal buffer to buffer the data of C3 until
the forward signal of the CF in the next lower bit-plane is ac-
tivated. The column-switching scan order, which is described in
Section III-A, is realized by FSM controller, and the state-tran-
sition diagram is shown in Fig. 9, in which each transition condi-
tion is described in Table II. The column-switching scan order
realized on the proposed architecture could be seen from the
another point of view: the context window moves forward and
backward between C1, C2, and C3, while an empty bit-plane of
code-block is shifted into the CF from right to left.

B. Four-Symbol Arithmetic Decoder

Fig. 10 shows the FAD architecture which is capable of
processing four symbols per cycle. The FAD contains two
one-symbol arithmetic decoder (AD) and two uniform decoder
(UD). The output of two multiplexors are controlled by the de-
coding result of the AD0. By the multiplexed controls, the FAD
could be operated at one-symbol, two-symbol or four-symbol
mode. For the one-symbol mode, only the AD0 is activated
when the coding pass is either the Pass 1 and the Pass 3 with
zero-valued magnitude bit, or the Pass 2 for the refinement
decoding. For the two-symbol mode, both the AD0 and the
AD1 are activated for the magnitude and sign decoding in Pass
1 and Pass 3. In four-symbol mode, two more UD are used
for the uniform decoding when RLC condition is satisfied but
nonzero decoded magnitude bit. In JPEG 2000 standard, there
is no adaptability for the uniform coding since the probability

Fig. 10. Architecture of four-symbol arithmetic decoder (FAD). The output
of two multiplexors are controlled by the decoding result of the AD0. By the
multiplexed controls, the FAD could be operated at one-symbol, two-symbol,
or four-symbol mode.

Fig. 11. Architecture of the register bank (RB) in bit-plane k. The RB receives
a column of decoded samples (d) from the CF in the upper bit-plane and
merges them with the column of partial-decoded coefficients (d ; d . . . d)
from the RB in the upper bit-plane.

TABLE III
HARDWARE REQUIREMENT OF THE PROPOSED ARCHITECTURE

of appearance of the position for the first nonzero bit in a
column is random. Therefore, the UD module is specially
designed to shorten its critical path by removing the circuits for
the adaptive functions. The critical path of two UD is equal to
that of one AD. The output of the FAD is the magnitude bit,
sign bit, uniform bit and updated coding states. The updated
coding states are written back to SRB, as shown in Fig. 6 and
the others are fed back to the CF.

C. Magnitude Register Bank

As shown in Fig. 6, the MRB is used to buffer the decoded
samples from the CF. The architecture of register bank (RB) for
a bit-plane is shown in Fig. 11. Each RB contains five columns
of registers. The forward signal passed from the FSM controller
of the CF controls the dataflow. The RB receives a column of
decoded samples () from the CF in the upper bit-plane and
merges them with the a column of partial-decoded coefficients
() from the RB in the upper bit-plane. The reg-
isters in RB can be classified into two parts, in which one part
is for storing partial-decoded coefficients in the current stripe
and the other part is for storing the coefficients of the last row
of the previous stripe. For the bit-plane , the former requires

bits and the latter requires 5 bits.

1110 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

TABLE IV
COMPARISON OF THE PARALLEL ARCHITECTURE AND OTHER WORKS

V. EXPERIMENTAL RESULTS

A. Implementation

The word-level architecture is described by the Verilog Hard-
ware Description Language (HDL) and is logic-synthesized.
This architecture supports 11 bits bit-width decoding, in which 1
bit for sign and 10 bits for magnitude. The selection of numbers
of bit-width is decoder issue. The numbers of bit-width influ-
ence the quality of decoding images. For example, the bit-width
of the DWT coefficients would grow up to 12 bits in the worst
case for the high-high band using 9–7 filter in the encoder. If
total 12 bits are losslessly encoded but only 11 bits are decoded
in the decoder, the decoded image quality is about .
In this implementation, we implement 11 bit-plane coders to de-
code high quality image.

The implementation results are shown in Table III. The logic
gates are measured with numbers of NAND-2 gates and the
datapath includes the registers. The supported code-block size
is 64 64 or 32 32. It is capable of processing 54 Msam-
ples/s at 54 MHz and can support HDTV 720p (1280 720,
4:2:2) resolution pictures decoding losslessly at 30 fps (Frames
Per Second) in real time. The proposed word-level decoding
architecture combined with level-switched scheduling is real-
ized in [24] to achieve pixel-pipelined dataflow. This codec is
implemented on a 20.1 die with 0.18 CMOS tech-
nology to achieve 124 MSamples/s at 42 MHz. There are three
block coders and each block coder provides 42 MSamples/s.
The degradation of frequency from the synthesized result 54
MHz comes from that the level-switched scheduling [24] is ap-
plied, and therefore the critical path is increased. Each block
coder occupies about 4 die area, but this area also con-
tain the additional logic gates and memory that enable level-
switched scheduling and encoding functions as well as the cir-
cuits for system integration.

The total 399 10 bits memory requirement for storing
coding states of AD are implemented with registers since
SRAM implementation occupies larger silicon area. To sup-
port parallel decoding with SRAM implementation, multiple
physical memories instead of single physical memory are
required to provide sufficient internal bandwidth. However,
the implementation with multiple physical memories occupies
larger area and consumes more power than that with registers.
Therefore, we use registers to implement the coding states of
AD. The 399 bits for a bit-plane contains two parts, one for
indexes of probability table for contexts and the other for arith-
metic register. There are 14, 3, and 16 contexts used for Pass
1, Pass 2, and Pass 3, respectively, and each context requires
7 bits. The arithmetic register for one coding pass are 56 bits.

Therefore, the memory requirement of the coding states for one
bit-plane is 399 bits (), and ten
magnitude bit-planes require 3990 bits.

B. Comparison

The comparisons with previous works are summarized in
Table IV. The throughput is the number of DWT coefficients
that can be processed in a cycle, and the frequency is synthe-
sized frequency. The precessing cycles means the number of
cycles required to process a code-block with size , and
the number of magnitude bit-planes of the code-block is .
The gates and memory are the required resources to implement
various architectures. The coding mode indicates which coding
mode is supported for this architecture. Note that the parallel
coding mode is a subset of the sequential coding mode. There-
fore, the proposed architecture can not be used in a generalized
decoder since the word-level architecture can not decode all
formats of bit-streams. It is suggested using this architecture
for the specific applications requiring high throughput rate such
as HD decoding.

Although [7]–[9] implement the encoder architectures, the
decoder function can be achieved by replacing the one-symbol
AE with one-symbol AD. However, the values of throughput
listed in the Table IV are ideal values for the decoder. The
throughput would be lower than those of the encoder since
some sample bits generate two or four symbols in a cycle. The
approach of buffering symbols by FIFO in the encoder design
can not be used due to the feedback path between the CF and
the AD. If the AD can not process all the generated symbols
in a cycle, the CF must be stalled. The ideal throughput can be
achieved by replacing one-symbol AE with four-symbol AD
at a cost of increase of logic gates. For [15], it implements the
word-level parallel architecture for the encoder. However, the
word-level parallel for the decoder can not be achieved even
if the AE is replaced with AD since the technique of looking
ahead can not be used for the decoder design. For the proposed
architecture, the encoder function can be realized if the AD is
replaced with AE since the proposed scan order can be applied
for both encoding flow and decoding flow.

The reported throughput for the sequential architectures
[7]–[9] are dependent on the average number of bit-planes
assumed. For a kind of architecture, the effective throughput
for processing images with average 4 bit-planes would be two
times higher than that for processing images with average 8
bit-planes. The numbers of average bit-planes are related to the
quantization value as well as target bit-rate. For the word-level
architecture, the throughput is constant as long as the average
number of bit-planes is smaller than that the hardware supports.

CHANG et al.: WORD-LEVEL PARALLEL ARCHITECTURE OF JPEG 2000 EBC DECODER 1111

Even if the number of bit-planes to be processed exceeds that
the hardware support, the exceeding LSB bit-planes can be
truncated at a cost of the scarification of image quality. The
most important advantage of the word-level architectures is
that they can guarantee constant throughput no matter how
many numbers of bit-planes are processed. The drawback
is that the hardware efficiency compared to the sequential
architectures is quiet low at very low bit-rate since only one
or two bit-planes are processed in average. Therefore, which
architecture is adopted depends on the target bit-rate and ap-
plications. Since the throughput of the sequential architectures
is dependent on the average number of bit-planes, it is hard
to make a comparison for various architectures in terms of
throughput. However, we can use mathematical form to present
the processing cycles required for processing a code-block, as
listed in the Table IV, and using it to judge the area efficiency
for various works at a specific number of bit-planes. We define
a performance index (PI), which is defined as the numbers
of samples are processed at one cycle and one unit area, i.e.,

where is number of bit-planes and is code-block size,
is used to make a comparison among various works. The
factor is used to enlarge the value of PI. At the case
and in which the average compression ratio (CR) is
about 2, all works have almost the same PI, 0.027. It means all
works have the same area efficiency at the case . Note
that the PIs of [7]–[9], [15] are calculated according to the
encoding speed and gates for the encoder and the gates do not
include the cost of memories. Experimental results for testing
various images show that the average numbers of bit-planes are
about 3.4 at CR 10. At this case, the PIs of [7]–[9] are all 0.047
while the PI of this work is still 0.028. Although the PI of this
work is lower than sequential architectures by 1.67 times, the
sequential architectures can not achieve high throughput de-
coding even they have higher PI. Besides, if the target CR is 10,
the numbers of bit-plane coders in the word-level architecture
can be reduced appropriately to increase the area-efficiency
since several LSB bit-planes are empty. Adopting ten bit-plane
coders in this work is just a case for implementation. You can
choose six bit-plane coders for the CR 10 since several LSB
bit-planes are empty, or more than ten bit-plane coders for
the CR 2 to support lossless decoding while achieving high
throughput at the same time. How many bit-planes used can be
dependent on which application is focused.

Finally, we compare the system integration for various EBC
architectures. When the bit-plane sequential coding architec-
tures [7]–[9] are integrated into system, either off-chip code-
block memory or on-chip code-block memory is required since
DWT is a word-level operation while the EBC is bit-plane level
operation. The code-block memory is used to buffer the DWT
coefficients. If the code-block memory is implemented with off-
chip memory, the power consumption for accessing off-chip
memory is large. If the code-block memory is implemented with
on-chip memory to reduce the access power of the memory,
it costs bits to store the DWT coefficients and the area
is increased. For the data organization in the memory, several
columns of a bit-plane are usually grouped as a word to avoid
redundant accesses for the memory since DWT has word-level

dataflow while the sequential EBC has bit-plane dataflow. In this
data organization, multiple memory words are required to form
a DWT coefficient in the decoder. The special memory con-
trol and additional data buffer for the dataflow conversion are
required. For the word-level architectures, both the DWT and
the EBC have word-level dataflow. They can be integrated into
system with few efforts on the data organization and memory
control. Besides, some system-level schedulings [25], [26], [24]
can be applied to reduce the memory requirement between the
DWT and EBC.

VI. CONCLUSION

This paper presents a word-level decoding architecture of
EBC in JPEG 2000 decoder. This architecture is based on
the proposed word-level decoding algorithm. This algorithm
overcomes intra bit-plane dependency and inter bit-plane de-
pendency by the proposed column-switching scan order. It also
eliminates state variable memories used in the conventional
decoding architecture. Implementation results shows that the
word-level architecture can support HDTV 720p (1280 720,
4:2:2) decoding losslessly at 30 fps.

REFERENCES

[1] JPEG 2000 Requirements and Profiles 1999, ISO/IEC JTC1/
SC29/WG1 N1271.

[2] JPEG 2000 Verification Model 7.0 (Technical Description) 2000,
ISO/IEC JTC1/SC29/WG1 N1684.

[3] JPEG 2000 Part I: Final Draft International Standard (ISO/IEC
FDIS15444-1) 2000, ISO/IEC JTC1/SC29/WG1 N1855.

[4] D. Taubman and M. Marchellin, JPEG2000: Image Compression Fun-
damentals, Standards and Practice. Norwell, MA: Kluwer, 2002.

[5] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still
image compression standard,” IEEE Signal Process. Mag., vol. 18, no.
5, pp. 36–58, Sep. 2001.

[6] W. Pennebaker and J. Mitchell, Eds., JPEG: Still Image Data Com-
pression Standard. New York: Van Nostrand Reinhold, 1992.

[7] C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G. Chen, “Analysis and
architecture design of block-coding engine for EBCOT in JPEG 2000,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 3, pp. 219–230,
Mar. 2003.

[8] Y.-T. Hsiao, H.-D. Lin, and C.-W. Jen, “High-speed memory saving
architecture for the embedded block coding in JPEG 2000,” in Proc.
IEEE Int. Symp. Circuits. Syst., Scottsdale, AZ, May 2002, vol. 5, pp.
133–136.

[9] J.-S. Chiang, Y.-S. Lin, and C.-Y. Hsieh, “Efficient pass-parallel archi-
tecture for EBCOT in JPEG 2000,” in Proc. IEEE Int. Symp. Circuits
and Syst., Scottsdale, AZ, May 2002, vol. 1, pp. 773–776.

[10] K. Andra, C. Chakrabarti, and T. Acharya, “A high-performance JPEG
2000 architecture,” IEEE Trans. Circuits Syst. Video Technol., vol. 13,
no. 3, pp. 209–218, Mar. 2003.

[11] G. Pastuszak, “A high-performance architecture for embedded block
coding in JPEG 2000,” IEEE Trans. Circuits Syst. Video Technol., vol.
15, no. 9, pp. 1182–1191, Sep. 2005.

[12] J.-S. Chiang, C.-H. Chang, Y.-S. Lin, C.-Y. Hsieh, and C.-H. Hsia,
“High-speed ebcot with dual context-modeling coding architecture for
JPEG2000,” in Proc. IEEE Int. Symp. Circuits. Syst., Vancouver, BC,
Canada, May 2004, vol. 3, pp. 865–868.

[13] A. K. Gupta, M. Dyer, A. Hirsch, S. Nooshabadi, and D. Taubman,
“Design of a single chip block coder for the ebcot engine in
JPEG2000,” in Proc. IEEE Int. Midwest Symp. Circuits and Systems,
Aug. 2005, pp. 63–66.

[14] H.-C. Fang, T.-C. Wang, C.-J. Lian, T.-H. Chang, and L.-G. Chen,
“High speed memory efficient Ebcot architecture for JPEG2000,” in
Proc. IEEE Int. Symp. Circuits. Syst., Bangkok, Thailand, May 2003,
vol. 2, pp. 736–739.

[15] H.-C. Fang, Y.-W. Chang, T.-C. Wang, C.-J. Lian, and L.-G. Chen,
“Parallel EBCOT architecture for JPEG 2000,” IEEE Trans. Circuits
Syst. Video Technol., vol. 15, no. 9, pp. 1086–1097, Sep. 2005.

1112 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

[16] Y.-K. Lai, L.-F. Chen, and T.-L. Huang, “A high throughput and
memory efficient ebcot architecture for JPEG2000 in digital camera
applications,” in IEEE Int. Conf. Consumer Electronics Dig. Technical
Papers, Jan. 2005, pp. 449–450.

[17] Y. Li, M. Elgamel, and M. Bayoumi, “A partial parallel algorithm
and architecture for arithmetic encoder in JPEG2000,” in Proc. IEEE
Int. Symp. Circuits and Syst., Kobe, Japan, May 2005, vol. 5, pp.
5198–5201.

[18] Y.-W. Chang, H.-C. Fang, C.-C. Chen, and L.-G. Chen, “Design and
implementation of word-level embedded block coding architecture
in JPEG 2000 decoder,” in Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Processing, Toulouse, France, May 2006, vol. 2, pp. 449–452.

[19] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Trans. Image Process., vol. 9, no. 7, pp. 1158–1170,
Jul. 2000.

[20] J.-L. Mitchell and W.-B. Pennebaker, “Software implementation of the
Q-coder,” IBM J. Res. Develop., vol. 32, no. 6, pp. 753–774, Nov. 1988.

[21] F. Ono, S. Kino, M. Yoshida, and T. Kimura, “Bi-level image coding
with MELCODE-comparison of block type code and arithmetic type
code,” in Proc. IEEE Global Telecommunications Conf., 1989, pp.
255–260.

[22] W. Pennebaker and J. Mitchell, JPEG: Still Image Data Compression
Standard. New York: Springer, 1992.

[23] H.-H. Chen, C.-J. Liang, T.-H. Chaing, and L.-G. Chen, “Analysis of
Ebcot decoding algorithm and its vlsi implementation for jpeg 2000,”
in Proc. IEEE Int. Symp. Circuits. Syst., Scottsdale, AZ, May 2000, vol.
4, pp. 329–3332.

[24] Y.-W. Chang, H.-C. Fang, C.-C. Cheng, C.-C. Chen, C.-J. Lian, and
L.-G. Chen, “124 Msmples/s pixel-pipelined motion-jpeg 2000 codec
without tile memory,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech-
nical Papers, San Francisco, CA, Feb. 2006, pp. 404–405.

[25] B.-F. Wu and C.-F. Lin, “A low memory qcb-based dwt for jpeg2000
coprocessor supporting large tile size,” in Proc. IEEE Int. Conf. Acous-
tics, Speech, Signal Processing, Philadelphia, PA, Mar. 2005, vol. 5, pp.
9–12.

[26] H.-C. Fang, Y.-W. Chang, C.-C. Cheng, C.-C. Chen, and L.-G.
Chen, “Memory efficient JPEG 2000 architecture with stripe pipeline
scheme,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Pro-
cessing, Philadelphia, PA, Mar. 2005, vol. 5, pp. 1–4.

Yu-Wei Chang was born in Taipei, Taiwan, R.O.C.,
in 1980. He received the B.S. degree in electrical en-
gineering from National Taiwan University (NTU),
Taipei, Taiwan, R.O.C., in 2003, and the Ph.D. de-
gree in 2007, also from NTU.

He is a currently a senior engineering in NovaTek,
Inc., Hsinchu, Taiwan. His research interests include
algorithm and architecture for image and video
coding system.

Hung-Chi Fang was born in I-Lan, Taiwan, R.O.C.,
in 1979. He received the B.S. degree in electrical en-
gineering in 2001 and the Ph.D. degree in 2005, both
from National Taiwan University, Taiwan, R.O.C.

During 2005, he was a Visiting Student at
Princeton University, Princeton, NJ, supported by
the Graduate Students Study Abroad Program of the
National Science Council ofTaiwan. He is currently
a Senior Engineering with MediaTek, Inc., Hsinchu,
Taiwan. His research interests are VLSI design and
implementation for signal processing systems, image

processing systems, and video compression systems.

Chun-Chia Chen was born in Changhwa, Taiwan,
R.O.C., in 1982. He received the B.S. degree in
electrical engineering in 2004 and the M.S. degree
in 2006 from the Graduate Institute of Electronics
Engineering, both at National Taiwan University,
Taipei, Taiwan, R.O.C.

He is currently a Senior Engineering at MediaTek,
Inc., Hsinchu, Taiwan. His research interests include
algorithms and architectures for JPEG 2000 and
JBIG2.

Chung-Jr Lian received the B.S., M.S., and Ph.D.
degrees in electrical engineering from National
Taiwan University (NTU), Taipei, Taiwan, R.O.C.,
in 1997, 1999 and 2003, respectively.

He is now a Postdoctoral Research Fellow at NTU
in the DSP/IC Design Lab. His major research inter-
ests include image and video coding (JPEG, JPEG
2000, MPEG, H.264/AVC, etc.) and image and video
codec VLSI architecture design.

Liang-Gee Chen (S’84–M’86–SM’94–F’01) was
born in Yun-Lin, Taiwan, R.O.C., in 1956. He
received the B.S., M.S., and Ph.D. degrees in
electrical engineering from National Cheng Kung
University, Tainan, Taiwan, in 1979, 1981, and 1986,
respectively.

He was an Instructor (1981–1986) and an As-
sociate Professor (1986–1988) in the Department
of Electrical Engineering, National Cheng Kung
University. In the military service during 1987 to
1988, he was an Associate Professor in the Institute

of Resource Management, Defense Management College. In 1988, he joined
the Department of Electrical Engineering, National Taiwan University (NTU),
Taipei, Taiwan. During 1993 to 1994, he was a Visiting Consultant in the DSP
Research Department, AT&T Bell Labs, Murray Hill, NJ. In 1997, he was
a Vvisiting Scholar of the Department of Electrical Engineering, University
of Washington, Seattle. During 2001 to 2004, he was the first Director of
the Graduate Institute of Electronics Engineering (GIEE) at NTU. Currently,
he is a Professor of the Department of Electrical Engineering and GIEE in
NTU, Taipei. He is also the Director of the Electronics Research and Service
Organization of the Industrial Technology Research Institute, Hsinchu, Taiwan.
His current research interests are DSP architecture design, video processor
design, and video coding systems.

Dr. Chen has served as an Associate Editor of the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY since 1996, as Associate Ed-
itor of the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS

since 1999, and as Associate Editor of the IEEE Transactions on CIRCUITS AND

SYSTEMS II since 2000. He has been the Associate Editor of the Journal of Cir-
cuits, Systems, and Signal Processing since 1999, and a Guest Editor for the
Journal of Video Signal Processing Systems. He is also the Associate Editor
of the PROCEEDINGS OF THE IEEE. He was the General Chairman of the 7th
VLSI Design/CAD Symposium in 1995 and of the 1999 IEEE Workshop on
Signal Processing Systems: Design and Implementation. He is the Past-Chair of
Taipei Chapter of IEEE Circuits and Systems (CAS) Society, and is a member
of the IEEE CAS Technical Committee of VLSI Systems and Applications, the
Technical Committee of Visual Signal Processing and Communications, and the
IEEE Signal Processing (SP) Technical Committee of Design and Implementa-
tion of SP Systems. He is the Chair-Elect of the IEEE CAS Technical Com-
mittee on Multimedia Systems and Applications. During 2001–2002, he served
as a Distinguished Lecturer of the IEEE CAS Society. He received the Best
Paper Award from the R.O.C. Computer Society in 1990 and 1994. Annually
from 1991 to 1999, he received Long-Term (Acer) Paper Awards. In 1992, he
received the Best Paper Award of the 1992 Asia-Pacific Conference on circuits
and systems in the VLSI design track. In 1993, he received the Annual Paper
Award of the Chinese Engineer Society. In 1996 and 2000, he received the Out-
standing Research Award from the National Science Council, and in 2000, the
Dragon Excellence Award from Acer. He is a member of Phi Tan Phi.

